SOLUTION OF HEAT-CONDUCTION PROBLEM WITH
VARIABLE HEAT-EXCHANGE COEFFICIENT

V. N. Kozlov UDC 536.21

Exact solution is obtained in the form of an infinite series of the heat-conduction equation
with boundary condition of the third kind and time-variable heat-exchange coefficient,

Considerable attention has been focused lately on solving problems of nonstationary heat conduction
with variable heat-exchange coefficient [1-10], their importance in practical application being the main
reason,

The mathematical formulation of the problem in the case of a planar body is as follows:
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1t is not possible to obtain an exact solution of Eq, (1) subject to conditions (2)-(4) in which the func-
tion Bi(Fo) is arbitrary. Various approximate methods can be found in the previously cited articles,

We will consider here the case of great interest in practice in which the function Bi(Fo) can be
represented in the form
Bi (Fo) = C, — , (Fo), )

where C, = const and the Laplace transformation of the function f;(Fo) is a rational function which vanishes
at infinity, that is, the function f,(Fo) can be represented as a rational combination of sines, cosines, poly-
nomials and exponentials; then it is possible to obtain an exact solution of the problem (1)-(4) in the form

of an infinite series, To this end, the method is used of "bifrequency transfer function" which was applied
in the analysis of control systems described by differential equations with time-variable coefficients [11].

A brief description of this method used for solving the problem (1)-(4) is given in the Appendix,

An ordinary differential equation for the function ®(1, Fo) will now be obtained from (1)-@).

Let us denote the right-hand side of the condition (2) by g(Fo)

q (Fo) = Bi (Fo) [0, (Fo) — @ (1, Fo), (6)

or, by inserting (6) into (2)
38 (1, Fo) _ .
X g (Fo). @)

By solving Eq. (1) subject to the boundary conditions of the second kind (7) and (3) one obtains [12]
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where

81, 9= L 81, Fo), ()= L g(Fo)

By expanding tanh Vs in (8) intoaseries and multiplying it by v's one obtains

qs) "
mzals+azs2+...+ans +... (9)

In the series (9) the coefficients a,, n = 1,2, . . .,areconstant, their actual numerical values being of no
interest to us.

By taking the inverse Laplace transform of (9) and using (6) an ordinary differential equation for @(1,

Fo)
co dﬂ
, F . 8 (1, Fo) = b, (Fo) O (F 10
a, (Fo) © (1 o)+;a —oos 01, Fo) = by (FO) 6, (Fo) (10)
is obtained where
a, (Fo) = b, (Fo) = Bi (Fo). (11)

One obtains the solution of the original problem (1)-{) fromthe solution of Eq, (10) as the inverse
Laplace transform of the following expression [12]:

BX, 5= = 6 (1, s). (12)
It can be shown that the left-hand side of (10) is uniformly convergent and this enables one to use the
method described in [11] to solve the equation (see Appendix).
Using the formula (A.2) the function oy (t) is determined
o, (1) =0a,(%), o, (v) =a,, k=1, 2, ... {13)
By employing (5) and (11) and denoting the constant coefficients of Eq. (10) by C;. one obtains
oy (1) = Co—fy (1), 0 =Cp, k=1, 2, ... (14)
It follows from (11) that the function

Bo (1) = @, (0). (15)
Using the formula (A.6) together with (13) and (14) the function ¥(s) is formed, namely
¥ (s) =C, —I-Z a,s®, (16)
=1
or, in accordance with the expansion (9),
¥ (s)=Co+ Vsthv/s (17)

The zeroth term (A.5) of the series (A.4) is

e B® (18)
Vol P = Vs
where
Bolp) = <> —=Fo0), Fo) = L fa®). (19

In the case under consideration the bifrequency transfer function (A.10) is given by

Ty e £, (9)

Employing the expressions (18) and (20) and also the formula (A.9) one can now find any term of the
series (A.4) and obtain subsequently by using the formula (A.12) the solution of Eq. (10) in the image domain,
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An example will now be given, Let
@, =1, Bi(Fo) == Bi, — (Bi, — Bi,) exp (— A Fo).

From (18) and (20) one obtains

. Bi Bi, — Bi 1 1
Wots, p) = D2 — Bl ) : (18"
o5 P) ( p p+r ] ¥

Bi, — Bi 1
W (s, )= D28l , (201
2 9 T T

respectively, It was assumed in the above that

¥ () =Bi,+vs+mithys4+mh, m=0,1, ... (21)

The function Wy (s, q) of (20') has one simple pole q; = —A with respect to the argument q. Therefore,
using (A.9) one has
Biy—Biy

W s+ pt+a)y, v=1,2 ... 92)
¥, 1S+ h p+A) {

W, (s, p) =

By employing the formula (22) the bifrequency transfer function W(s, p) is obtained as

- Bi, . Bi, — Bi (Biy — Bi,)”
W s, = 2 — 2 : v'2 * 23
=3 (Fr i) qv.o )
m=0

Using (A.12) and bearing in mind that 6c(s) = 1/s, the solution of Eq. (10) is found in the image domain.
Inserting it into (12) one obtains

5x o Vs xﬁ ( Bi, Bi, — Bi, ) (Bi,— Bi,)"

s+ vk s+ (4 DA ﬁ,i, @ ' 24)

m=0

The expression (24) is a solution of the Laplace-transformed equation (1) and the boundary conditions
(2)-(4) for the adopted functions ®,(Fo) and Bi(Fo). The solution of the problem in the time domain is given
by

o v a0 )
B8 (X FO) =] E cos Cm-n‘x (Bi, — Bll)v
Ly = -
et dod Ccos Cm,n Iym (Sm,n) l—l Th (Sm_’ n)

k=0

ktm
Bi Bi, — Bi
X 2 22 2L | exp (— 5 . Fo). 25
[ =G (1D) x—c?n,J P tnat) =
In the above Sm,n denote the roots equations ¥, (s) =0, m = 0,1,2, . .., which can be determined by
using the formula

Spn=— (2 M) = —8, n=1,2 ..., (26)

in which K, are the roots of the transcendental equation
L p=ctgu. (27)

Bi,
It was assumed in (25) that there are no multiple poles in (24).

In the approximate computations for the formula (25) one can only use, as, similarly in the constant
criterion of Biot, a finite number of terms since with m and n increasing the exponentials diminish rapidly.

Appendix

In [11] the following ordinary differential equation is considered:

N dn M
Ean«) 2y = 2 b )

n=0 m=0

dam . A1)
x(), M=<N. A.
o ®
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The equation can be solved by using the so-called bifrequency transfer function,

If the functions

\ _1yn—k ok a*
w@= Y EIrd s aw *.2)
n="k

which depend on the coefficients of the left-hand side of Eq. (A.1l) can be represented in the form
o, (1) = G, — [, (1), (A.3)

in which Cp. = const, and the Laplace transforms of the functions fy (r) are rational functions which vanish at
infinity, then the bifrequency transfer function W(s, p) can be determined as an abgolutely and uniformly
convergent series

W p) =3 W6 0 (3.4

v=0

The zeroth term of the series is given by the formula:

M
e 1 .3
Voo, p) = (3)2 $'B, (o), (A.5)
k=0
where
N
¥ (s) =2 Cys*, (A.6)
k=0
mm=#mm (A.7)
\ — A.8
B (1) = 2 (1 Ch L b 0, (A.8)
m==k

and the subsequent terms are obtained from the recurrence relation

- I Vi1 . '
Wv (S’ p) = X { d ot [(q— q]) ! Wu (Sv q) Wv——l (S —q, P —"q)] } * (Ang)
(=t 7L g =1
j=1 q i
In the above, i denotes the number of poles in the second argument q of the bifrequency transfer function
1 N
W » = - SkF ’ (A']'O)
u (S q) II’ (S) 13 (q) .
k=0
where
Frl@= L i (%), (A.11)

and Vj is the multiplicity of the j-th pole,

Having found the bifrequency transfer function Ws, p) one finds the solution of Eq, (A.1) in the image
domain given by the formula

w—1
dp ] p=pj

¢ | -
Vo= o % | (o= Ve nxe—al|_ (A.12)
=1

where the sum is extended over all i poles p, of the second argument of the function W (s, p) and u j denotes
the multiplicity of these poles, ] ’
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NOTATION

® is the temperature of the plate;
®c is the temperature of the medium;
b4 is the space coordinate;
L is the thickness of the plate;
a is the coefficient of temperature conductivity;
A is the heat-conduction coefficient;
o is the heat-exchange coefficient;
X =x/L is the nondimensional coordinate;
Fo =at/L? is the Fourier number;
Bi(Fo) = @(Fo)L/A is the Biot criterion;
t is time,
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